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Conformal invariance and surface critical behaviour of a 
quantum chain with three-spin interaction 
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of Germany 
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Abstract. An Ising model with three-spin interaction is investigated by finite-size scaling 
applying free boundary conditions. The surface critical properties of the model were 
determined by conformal invariance. Taking into account logarithmic corrections the 
surface critical exponents obtained are in accordance with the four-state Potts values. 

Recently models with many-body interactions have received increasing attention. It 
is now known from some exact results (Baxter 1972, Baxter and Wu 1973) that the 
critical properties of these models generally depend on the range of the interaction. 
Recently considerable effort has been made to clarify the critical properties of the 
following simple one-dimensional quantum model described by the Hamiltonian (Tur- 
ban 1982, Penson et a1 1982): 

where U: and U: denote the Pauli matrices at site i. The classical statistical mechanical 
equivalent of this model is a two-dimensional square lattice Ising model with mixed 
m-spin and two-spin interactions. 

The Hamiltonian (1) is self-dual (Turban 1982, Penson et a1 1982), the self-dual 
point being h = A  independent of m. There is one phase transition in the system, which 
turns from second order to first order, when m > m , .  By now it is established that 
m, = 3 (Igloi et a1 1986, Blote er a1 1986b, Alcaraz 1986). However, the situation with 
the universality class of the m = 3 model was controversial. The first numerical results 
(Penson et a1 1982, Igloi et a1 1983, 1986, Debierre and Turban 1983, Kolb and Penson 
1986) were significantly different from those of the four-state Potts model, not support- 
ing the conjecture of Debierre and Turban (1983) that the two models belong to the 
same universality class. More recently, however, a mapping has been revealed between 
the two models (Blote 1987) which becomes exact in the very anisotropic limit. Recent 
numerical results on the bulk critical properties--taking into account the effect of 
logarithmic corrections-confirm the validity of the above mapping (Blote et a1 1986b, 
Alcaraz and Barber 1987, Vanderzande and Igloi 1987). Furthermore the critical 
properties of the model ( 1 )  seem to be independent of the value of the spin for m = 2 
and m = 3 (Igloi et a /  1987). 
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In  this paper we extend the investigations to the surface critical behaviour of the 
m = 3 model. Our aim in the present work is twofold: ( i )  to justify the equivalence in 
the surface critical behaviour between the m = 3 model and the four-state Potts model, 
and (ii) to obtain more accurate numerical results on the surface critical exponents of 
models in the four-state Potts universality class. 

The surface critical exponents of the q-state Potts model have been conjectured by 
Cardy (1984) using conformal invariance. According to his results the anomalous 
dimension of the surface spin-spin correlations x: = qIl/2 is 

x:= ( m  - l ) / ( m +  1) (2) 

where 

J;5= 2 cos[ r / ( m  + I)] (3) 

and m is an odd integer. Thus q = 4 corresponds to m = CO, and then x: = 1. On the 
other hand the anomalous dimension of the surface energy-energy correlations x i  is 
independent of the value of q (Diehl et al 1983, Cardy 1984): x: = 2. 

The validity of the above conjectures has been investigated in several papers. For 
q = 2 x i  coincides with the exact result on the lsing model (Pfeuty 1970, Burkhardt 
and Guim 1985) and for q = 3 numerical calculations (Droz et a1 1985, von Gehlen 
and Rittenberg 1986) support the validity of (2). However, for q = 4 the first numerical 
results were significantly different from x: = 1. Droz et a1 (1985) obtained x: = 0.77, 
and von Gehlen et a1 (1986) x: = 0.905. The reason for these discrepancies, as was 
pointed out by Vanderzande and Stella (1987), is the effect of logarithmic corrections 
(Nauenberg and Scalapino 1980, Cardy et a1 1980). By taking these corrections properly 
into account Vanderzande and Stella (1987) were able to verify numerically Cardy’s 
(1984) conjecture. 

In this paper the ground-state properties of the m = 3 model in (1) are determined 
for finite chains using free boundary conditions. Then the surface critical properties 
are obtained from these data using conformal invariance (Cardy 1987). The method 
of conformal invariance has already been applied for the m = 3 model by Kolb and 
Penson (1986) and Alcaraz and Barber (1987) to determine the bulk critical properties. 
In this case periodic boundary conditions have to be applied, which restrict the possible 
length of the finite chains as L = 3 * I ( I  = 1,2,. . .). For free chains there is no such 
restriction (Iglbi et a1 1983), thus much more finite-size data are available. 

In the following we briefly describe the symmetry properties of the low lying energy 
levels of free chains (Iglbi et al 1983). The spectrum of the Hamiltonian splits into 
four disjoint sectors. The zeroth sector is non-degenerate. It is characterised by the 
state ++++. . .+, and for finite chains it contains the ground state of the system. The 
first, second and third sectors are characterised by the states: -+++. , .+, +-++. . .+ 
and ++-+. . .+, respectively. These three sectors are degenerate for infinite chains 
(and also for periodic finite chains), but for free finite chains there are always two 
degenerate and one non-degenerate sectors. For L(mod 3)  = 0,1,2,  the second, the 
first and the third sectors are non-degenerate, respectively. In the following the kth 
energy level in the nth sector is denoted by En,k ( n  = 0, 1,2,3; k = 0, 1,. . .). 

According to conformal invariance (Cardy 1987, von Gehlen and Rittenberg 1986) 
these energy levels satisfy the following relations at the bulk critical point h = A :  



Surface critical behaviour 5321 

Here xo = x: and x, = x2 = x3 = x: are the anomalous dimensions of the energy and the 
spin operators at the surface, respectively. 6 is the sound velocity appearing in the 
Hamiltonian formalism, since a Hamiltonian may be multiplied in principle with any 
constant. 

In addition the central charge c of the Virasoro algebra may be determined from 
the finite-size corrections to the ground-state energy at A = h (Blote et a1 1986a, Affleck 
1986): 

E , , , / L = a , + a , / L - . r r c ~ / 2 4 L 2 + c r ( l / L 2 ) .  ( 5 )  
In practice we calculate the energy levels En,k for n = 0, 1 ,2 ,3  and k = 0, 1 for free 

chains up to L = 17. The numerical solution of the eigenvalue problem was performed 
by the Lanczos method as described by Patkds and Rujin (1985). We have found that 
the energy levels for n = 1, 2 and 3 determine the same anomalous dimension x,. 
However, the boundary conditions influence the various gaps differently. In order to 
decrease the systematic fluctuations present in the individual gaps, we averaged over 
the energy levels for n = 1, 2 and 3, as previously done in the paper of Igldi et a1 
(1983). In the following we use the notation 

E1.k = f(E,,k + E2.k + E3.k) (6) 
for the averaged energy levels. 

The various scaled gaps for different lengths of the chain are presented in table 1 
together with the extrapolated values. The errors in the extrapolation are due to two 
facts. The series contain systematic deviations by modulo 3 and the different series 
show strong corrections to scaling. From the numerical data one obtains l /( log L )  
corrections to the first series and 1/ L corrections to the last two series. From the ratio 
of the extrapolated values given in table 1, one can estimate x: = 1.OiO.06 and 
x: = 2.0*0.1 in accordance with the four-state Potts values as conjectured by Cardy 
(1984). The extrapolated value of the sound velocity (=3.15*O.l is in accordance 
with the findings of Alcaraz and Baxter (1987) and coincides (within errors) with the 

Table 1. The various scaled gaps for different lattice sizes. Extrapolated values are presented 
at the foot of each column. 

3 
4 
5 
6 
7 
8 
9 

10 
11  
12 
13 
14 
15 
16 
17 

Ext 

1.669 28 
1.867 96 
1.987 52 
2.069 24 
2.134 83 
2.18452 
2.224 73 
2.259 09 
2.287 78 
2.312 55 
2.334 50 
2.353 74 
2.370 94 
2.386 53 
2.400 61 

f x :  = 3.2 * 0.1 

4.370 23 
4.733 85 
5.000 92 
5.288 53 
5.453 61 
5.584 09 
5.688 54 
5.762 3 1 
5.824 73 
5.876 3 1 
5.916 84 
5.952 23 
5.982 56 
6.007 88 
6.030 47 

(x: =6.35*0.1 

2.700 95 
2.809 29 
2.212 65 
2.021 13 
2.254 25 
2.421 62 
2.527 93 
2.616 85 
2.683 08 
2.732 50 
2.776 20 
2.810 57 
2.838 51 
2.863 76 
2.884 56 

( = 3.15 * 0.1 
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value of the Hamiltonian four-state Potts model: 5 = 3.16 (von Gehlen et a1 1986). It 
means that not only the critical exponents are the same in the two models but the 
sound velocities as well. 

In the following we shall try to decrease the extrapolation errors, by taking into 
account logarithmic corrections in the same form as in the four-state Potts model. The 
appearance of logarithmic singularities in the four-state Potts model is the consequence 
of a marginal scaling field, denoted by $, which appears besides the other scaling 
fields. In our case these are the energy (temperature) in the bulk ( c p )  and on the surface 
(cp ' ) ,  and the magnetic field in the bulk ( h )  and on the surface ( h ' ) .  Following the 
work of Nauenberg and Scalapino (1980), Cardy et a1 (1980) and Blote and Nightingale 
(1982), Vanderzande and Stella (1987) have recently shown that the scaling form of 
the free energy of the four-state Potts model is 

f ( c p ,  cp', h, h',  $9 L )  

(7) 

z=[l-($(o) / . r r ) IogL]- '  (8) 

= , r - i f ( ~ Z - x ~ ~ 3 / 4 ~ ,  ~ I - x ; ~ f ,  ~ 2 - y .  z 1/16 h, L'-";z- 'h' ,  z$, 1) 

where 

and L is the linear size of the system. From these equations it is easy to read the 
strength of the leading logarithmic corrections. x: has no such corrections (it is a 
consequence of the fact that x: does not depend on q ) ,  while the leading finite-size 
correction to xf 

(9) 
is universal in accordance with Cardy (1986). Here xi( L )  denotes the effective exponent 
obtained by a two-point fit. Now following the strategy of Blote et a1 (1986b) and 
Vanderzande and Ig16i (19871, we plot in figure 1 the expression xf( L )  + l / log L with 
respect to l /( log L)'. As is seen the effective exponents for different L lie close to a 
straight line, and with relatively small errors, an extrapolation can be performed 
yielding x:= 1.00*0.02. Now repeating the analysis for the xb exponent, by taking 

x:( L )  = X: - I/log L+ b/(log L)' 

16 14 12 11 10 9 8 7 

l / l i G q L ) *  

Figure 1. The effective exponent x , ( L ) +  l/log L as a function of ]/(log L)*. 
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the ratio of the values present in the last two columns of table 1, one obtains 
x i  = 2.00f0.03 in very good agreement with the theoretical predictions (Cardy 1984). 

Finally we turn to the question of the determination of the central charge of the 
Virasoro algebra, by using the relation ( 5 ) .  Since neither the ground-state energy, nor 
the surface energy term is known exactly for the infinite system, a,,  a,  and c( can thus 
be obtained by a three-point fit. The results evaluated from the finite lattice data with 
lattice sizes L, L - 3 and L - 6 are presented in table 2.  As is seen the effect of confluent 
singularities on c( is extremely strong. For periodic chains according to Cardy (1986) 
the effective c ( L )  values should approach their limit from above as l / ( log  L ) 3 .  For 
free chains, the general theory is not available, but for the quantum X X Z  chain 
Woynarovich (1987) has shown that the first logarithmic correction is c (  L )  = 
c +  cy/(log L)’, where cy < 0. In our case the calculated c ( L )  values also obey this 
relation, and the extrapolated value of the central charge c = 0.95 f 0.07 is in accordance 
with the c = 1 characteristic for models in the four-state Potts universality class (Cardy 
1987). 

Table 2. Three-point fit estimates for the central charge from equation (5) .  The finite lattice 
results for L, L - 3  and L - 6  were compared. 

L 

9 
10 
I 1  
12 
13 
14 
15 
16 
17 

-1.197 58 
-1.197 81 
-1.197 94 
-1.19805 
-1.198 12 
-1.198 17 
-1.198 21 
-1.198 24 
-1.198 26 

0.5105 
0.5137 
0.5158 
0.5176 
0.5190 
0.5201 
0.5210 
0.5217 
0.5223 

c5 

1.835 
1.913 
1.97 1 
2.029 
2.083 
2.125 
2.164 
2.199 
2.230 

To summarise we have determined the surface critical properties of a three-spin 
coupling model by conformal invariance. The obtained anomalous dimensions x: = 
1 .OO f 0.02 and x:. = 2.00 * 0.03 are in very good agreement with Cardy’s (1984) conjec- 
ture for the four-state Potts model. Comparing our calculation with those performed 
with periodic boundary conditions, we can say that in  our case about three times more 
finite lattice points are available. A similar comparison with the four-state Potts model 
(von Gehlen er a1 1986) shows about twice as many finite lattice results in our  
calculation. Thus we can conclude that our results supply the most accurate numerical 
evidence to verify the following two conjectures: ( i )  the m = 3 model and the four-state 
Potts model belong to the same universality class and (ii) the surface magnetic exponent 
of the four-state Potts model is given by ( 2 ) .  
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